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SOLUTION OF THE PLANE HERTZ PROBLEM

UDC 539.3I. I. Argatov

The paper considers the problem of one-sided frictionless compression of plane elastic bodies that
are initially in contact with each other at a point. The first terms of an asymptotic solution of
the problem are constructed by the method of joined asymptotic expansions. Determination of the
approach of the bodies as a function of the pressing force reduces to calculating so-called of local
compliance. The problems of contact of an elastic ring and elastic circular disks with punches and
an elastic disk compressed between two elastic strips are considered. An asymptotic model for the
quasistatic collision of plane elastic bodies is proposed.

The problems of one-sided contact of elastic bodies have been studied within the framework of the theory of
variational inequalities (see, e.g., [1–4]). A finite-element algorithm for solving problem (1.8) was developed in [1].
In the present paper, an approximate solution of the problem is constructed by the method of joined asymptotic
expansions [5–7]. This method was used in [8] to solve the problem of compression of two circular disks and in [9]
to analyze the indentation of an elastic disk into a rigid corner with allowance for friction. The problem considered
below was solved in [10] to study the strength of valves for channels of small flow section.

1. Formulation of the Problem. We consider two elastic bodies Ω1 and Ω2 pressed into one another
(Fig. 1). We denote the displacement vector of the body Ωr (r = 1, 2) by ur = (ur1, u

r
2). It is assumed that the

body Ω1 is fixed along the part of the boundary Γu, i.e.,

u1(x) = 0, x = (x1, x2) ∈ Γu. (1.1)

In view of the symmetry of the problem, on the segment Γ0 of the boundary of the body Ω2, we specify the
conditions of two-sided contact:

u2
2(x) = 0, τ2

12(u2;x) = 0, x ∈ Γ0. (1.2)

On the segment Γ2
τ , surface loads are specified:

2∑
j=1

τ2
ij(u

2;x)n2
j (x) = qi(x) (i = 1, 2), x ∈ Γ2

τ . (1.3)

For simplicity, we assume that the segment Γ1
τ of the boundary of the body Ω1 is free of stress:

2∑
j=1

τ1
ij(u

1;x)n1
j (x) = 0 (i = 1, 2), x ∈ Γ1

τ . (1.4)

Here τ rij(u
r) are the stress-tensor components corresponding to the displacement vector ur and erij are the strain-

tensor components of the body Ωr:

τ rij = 2µrerij + δijµr
3− ær
ær − 1

(er11 + er22), erij =
1
2

(∂uri
∂xj

+
∂urj
∂xi

)
,

where δij is the Kronecker symbol, µr is the shear modulus, ær = 3 − 4νr (for plane strain), and νr is Poisson’s
ratio.
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Fig. 1

In the undeformed state, the elastic bodies Ω1 and Ω2 contact each other at the point C, which is the origin
of the local coordinates y1 and y2. Under the external load, the body Ω2 is pressed into Ω1. For simplicity, we
assume that there is no friction between the surfaces in contact is absent. The segments of the boundaries Γ1

c and Γ2
c

that can come into contact during the deformation are smooth curves defined by the equations

y2 = fr(y1), y1 ∈ (−l1, l2) (r = 1, 2), (1.5)

where (−l1, l2) is the interval containing the projection of the possible contact zone. We determine the distance
between the points of the bodies in contact in the initial state (before deformation)

∆(y1) = f2(y1)− f1(y1). (1.6)

To obtain the boundary conditions of one-sided contact on Γ1
c and Γ2

c , we consider the variational formulation
of the problem [1]. We introduce the space of possible displacement fields with finite energy V = {(v1,v2): v1 = 0
on Γu, v2

2 = 0 on Γ0} (see [1]) and define the potential energy functional

L(v1,v2) =
2∑
r=1

1
2

∫
Ωr

2∑
i,j=1

τ rij(v
r;x)eij(vr;x) dx−

∫
Γ2
τ

2∑
i=1

qi(x)v2
i (x) dsx.

According to [1], the contact problem of compression of two bodies Ω1 and Ω2 which are initially in contact
at a point reduces to minimization of the functional L(v1,v2) on the set of admissible displacements

K∆ =
{

(v1,v2) ∈ V : v̂1
2(y1, f1(y1))− v̂2

2(y1, f2(y1)) 6 ∆(y1), y1 ∈ (−l1, l2)
}
.

Here v̂r2 = −vr1 sin γ+ vr2 cos γ is the projection of the vector vr onto the Oy2 axis and γ is the angle between the x1

and y1 axes.
The following statement is valid (see [1, Theorem 2.6]). Let Γ0 be composed of segments parallel to the Ox1

axis. If cos (x1, y2) < 0 and

Q1 =
∫

Γ2
τ

q1(x) dsx > 0, (1.7)

there exists a unique solution (u1,u2) ∈ K∆ of the problem

L(u1,u2) 6 L(v1,v2) ∀(v1,v2) ∈ K∆. (1.8)

Furthermore, at points of the curves Γ1
c and Γ2

c with equal abscissa y1 ∈ (−l1, l2) the following relations hold:

û1
2(y1, f1)− û2

2(y1, f2) 6 ∆(y1), T̂ 1
2 (y1, f1)/ cosα1 = −T̂ 2

2 (y1, f2)/ cosα2 6 0,
(1.9)

[û1
2(y1, f1)− û2

2(y1, f2)−∆(y1)]T̂ 1
2 (y1, f1) = 0;

T̂ 1
1 (y1, f1) = T̂ 2

1 (y1, f2) = 0. (1.10)
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Here T̂ ri is the projection of the stress vector at a site with normal nr onto the Oyi axis and αr is the angle between
the Oy1 axis and the tangent to Γrc . Satisfaction of inequality (1.7) means that the body Ω2 is pressed into Ω1.

To use the asymptotic method, we introduce the small parameter ε

qi = εq∗i (1.11)

and assume that the body Ω2 is subjected to a force system with the resultant

Q1 = εQ∗1, Q∗1 =
∫

Γ2
τ

q∗1(x) dsx

proportional to the parameter ε and directed along the Ox1 axis.
Following [11], we construct the leading terms of the asymptotic solution of the problem (1.8), (1.11) as

ε→ 0.
2. External Asymptotic Representation. We denote by G1(x) the solution of the problem of the body

Ω1 loaded at the point C by a unit force directed along the inward normal to the boundary of Ω1. The vector
G1(x) must satisfy the Lamé equations in Ω1, the boundary condition (1.1) on the segment Γu, and the condition
that the segments Γ1

τ and Γ1
c \ C are stress-free.

The projections of the vector G1(x) onto the axes of the local coordinate system Cy1y2 are given by

Ĝ1
1(y) = G1

1(x) cos γ +G1
2(x) sin γ, Ĝ1

2(y) = −G1
1(x) sin γ +G1

2(x) cos γ, (2.1)

where x1 = y1 cos γ − y2 sin γ and x2 = y1 sin γ + y2 cos γ.
As |y| = (y2

1 + y2
2)1/2 → 0, we obtain the asymptotic formulas

Ĝ1
i (y) = S1

i (y/R1) + n1A
1
i +O(|y|) (i = 1, 2). (2.2)

Here R1 is the radius of curvature of the contour Γ1
c at the point C, Sr(y/R1) is a solution of the Flamant problem

(see, e.g., [12, § 90]) of the elastic half-plane y2 6 0 (for r = 1) loaded by a unit point force in opposition to the Cy2

axis, and

4πµrSr1(ζ) = −2ζ1ζ2/|ζ|2 + (ær − 1) arctan (ζ1/ζ2),
(2.3)

4πµrSr2(ζ) = (ær + 1) ln |ζ| − 2ζ2
2/|ζ|2, nr = (ær + 1)/(4πµr).

Here ζ = (ζ1, ζ2) are dimensionless coordinates.
At a distance from the contact site, the displacement field u1(x) of the body Ω1 is written as

v1(x) = PG1(x), (2.4)

where P is the contact force.
We consider the body Ω2. To describe its displacement field u2(x) at a distance from the contact site, we

replace the action of the body Ω1 on Ω2 by the point force P directed along the Cy2 axis. As a result, we arrive
at the problem of equilibrium of the body Ω2 which lies on the smooth support Γ0 and is loaded by a self-balanced
force system. The solution of this problem is determined with accuracy up to translational displacement.

We introduce a normalized solution of this problem v20(x) which is uniquely determined by the condition
v20

1 (O) = 0 having simple mechanical meaning: slip is absent at the point O. The vector v20(x) must satisfy the
homogeneous Lamé equations in the region Ω2, the boundary conditions of two-sided contact on Γ0 (1.2), the force
boundary condition on Γ2

τ (1.3), and the asymptotic condition at the limit x→ C [cf. Eq. (2.2)]:

v̂20
i (y) = −P [S2

i (y/R2) + n2A
2
i +O(|y|)] (i = 1, 2). (2.5)

Here R2 is the radius of curvature of Γ2
c at the point C and v̂20

i (y) is the projection of the vector v20(x) onto the
Cyi axis [see Eqs. (2.1)].

The equation of static equilibrium of the body Ω2 yields

P = εP ∗, P ∗ = (sin γ)−1Q∗1. (2.6)
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Finally, the external asymptotic representation for the displacement vector of the elastic body Ω2 is given
by

v2(x) = v20(x) + αe1, (2.7)

where the constant α is a small displacement of the center of the body Ω2 along the Ox1 axis. Let

α = εα∗. (2.8)

The quantity α is determined by local strains in the contact zone.
3. Problem of One-Sided Contact for the Boundary Layer. In the neighborhood of the initial

contact point, the boundaries Γ1
c and Γ2

c are approximated by the parabolas

fr(y1) = (−1)r(2Rr)−1y2
1 +O(y3

1) (r = 1, 2). (3.1)

We introduce the “extended” coordinates

η = (η1, η2), ηi = ε−1/2yi. (3.2)

The degree of extension in (3.2) is chosen so that the dimensions of the contact site do not depend on the parameter ε
in the coordinates η1 and η2 (see existing solutions of the problem of a parabolic punch pressed into an elastic half-
plane [12, 13]).

Accordingly, we express the magnitude of the clearance between the surfaces of the bodies Ω1 and Ω2 in the
undeformed state [see Eq. (1.6)]:

∆(ε1/2η1) = ε[(2R1)−1 + (2R2)−1]η2
1 +O(ε3/2η3

1). (3.3)

At the same time, using (1.5) and (3.1), we obtain the asymptotic representation of the boundaries Γ1
c and Γ2

c in
the coordinates (3.2):

η2 = (−1)rε1/2(2Rr)−1η2
1 (r = 1, 2). (3.4)

Because in conversion to the coordinates (3.2), the ends of the arcs Γ1
c and Γ2

c are shifted from the point C
by the distances ε−1/2l1 and ε−1/2l2, respectively, the internal asymptotic representation wr(η) of the displacement
field ur(x) of the elastic body Ωr is formulated in a semi-infinite region with the parabolic boundary (3.4).

According to the method of joined asymptotic expansions, formulas (2.2) and (2.5) [with allowance for (2.4)
and (2.7)] define the behavior of the vector functions w1(η) and w2(η) at infinity. Letting |η| → ∞ and ignoring
terms O(ε1/2|η|) in (2.2) and (2.5), we obtain

w1(η) = εP ∗
[
S1(ε1/2η/R1) + n1A

1
]

+O(|η|−1); (3.5)

w2(η) = −εP ∗
[
S2(ε1/2η/R2) + n2A

2
]

+ εα∗(cos γ,− sin γ) +O(|η|−1). (3.6)

In Eqs. (3.5) and (3.6), the normalizing relations (2.6) and (2.8) are used.
We obtain boundary conditions for the vectors w1(η) and w2(η). To this end, we substitute relations (3.1)

into the boundary conditions of one-sided frictionless contact (1.9) and (1.10) and make the change of variables
inverse to (3.2). As a result, with allowance for (3.4), the nonpenetration condition for the bodies in contact [see
the first inequality in (1.9)] becomes

w1
2(η1, ε

1/2ϕ1(η1))− w2
2(η1, ε

1/2ϕ2(η1)) 6 ε∆∗(η1). (3.7)

Here ϕr(η1) = (−1)r(2Rr)−1η2
1 (r = 1, 2) and ∆∗(η1) = [(2R1)−1+(2R2)−1]η2

1 . Similarly to (3.7), one can transform
the remaining relations in (1.9) and (1.10).

4. Internal Asymptotic Representation. In the local-strain region, the solution can be written as

w1(η) = εW 1(η) + εP ∗n1(A1 + ê2 ln
√
ε); (4.1)

w2(η) = εW 2(η)− εP ∗n2(A2 + ê2 ln
√
ε) + εα∗(cos γ,− sin γ), (4.2)

where ê2 is the unit vector of the Cη2 axis.
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Substitution of (4.1) and (4.2) into (3.7) yields

W 1
2 (η1, ε

1/2ϕ1(η1))−W 2
2 (η1, ε

1/2ϕ2(η1)) 6 ∆∗ε(η1),
(4.3)

∆∗ε(η1) = ∆∗(η1)− P ∗
2∑
r=1

nr(Ar2 + ln
√
ε)− α∗ sin γ.

Finally, we obtain the boundary condition for the leading terms of the asymptotic representation of the vector
functions W 1(η) and W 2(η) by passing to the limit on the left side of inequality (4.3) as ε→ 0 and “straightening”
the boundaries (3.4).

Thus, the vectors W 1(η) and W 2(η) must satisfy the Lamé equations in the half-planes η2 < 0 and η2 > 0,
respectively, and the following conditions at infinity (r = 1, 2):

W r(η) = (−1)r+1P ∗Sr(η/Rr) +O(|η|−1), |η| → ∞. (4.4)

Moreover, the relations

W 1
2 (η1, 0)−W 2

2 (η1, 0) 6 ∆∗ε(η1), τ1
22(η1, 0) = τ2

22(η1, 0) 6 0,
(4.5)[

W 1
2 (η1, 0)−W 2

2 (η1, 0)−∆∗ε(η1)
]
τ1
22(η1, 0) = 0, τ1

12(η1, 0) = τ2
12(η1, 0) = 0

must be satisfied at the boundary η2 = 0.
One can easily obtain the exact solution of this problem using the results of [12, 13]. We denote the half-

width of the unknown contact zone [in the coordinates (3.2)] by h∗. We express the vector function W r(η) in
terms of the integral

W r(η) = (−1)r+1

h∗∫
−h∗

S
(η1 − ξ

Rr
,
η2

Rr

)
p∗(ξ) dξ (4.6)

with the density
p∗(η1) = (2P ∗/(πh∗))

√
1− η2

1/h
2
∗. (4.7)

The vector (4.6) satisfies the asymptotic condition (4.4). At the same time, the equality

W r
2 (η1, 0) = (−1)rP ∗nr

(η2
1

h2
∗
− ln

2Rr
h∗
− 1

2

)
[η1 ∈ (−h∗, h∗)] (4.8)

holds on the boundary of the half-plane. Substituting the expression for ∆∗ε(η1) from (4.3) and the boundary
values (4.8) into the displacement-compatibility equation W 1

2 (η1, 0) −W 2
2 (η1, 0) = ∆∗ε(η1), where η1 ∈ (−h∗, h∗),

after simple manipulations we obtain the system

h2
∗ = (2R1R2/(R1 +R2))P ∗(n1 + n2); (4.9)

P ∗
2∑
r=1

nr

(
ln

2Rr√
εh∗

+
1
2
−Ar2

)
= α∗ sin γ, (4.10)

where nr is the elastic constant given in (2.3) and 2h∗ is the dimension of the contact zone in the coordinates (3.2).
Reverting to the real scale, from (3.2) we obtain

h =
√
εh∗. (4.11)

Thus, we have obtained formulas (4.7), (4.9), and (4.10) by constructing the leading terms of the asymptotic
solution of the initial contact problem. As one would expect, Eqs. (4.7) and (4.9) coincide with the Hertz solution.
Equation (4.10) relating the force P ∗ to the displacement α∗ is a new result.

5. Asymptotic Modeling of Compressed Elastic Bodies. Sample Problems. The contact pressure
and the characteristic contact parameters h and α are determined from the following equations [see (2.6), (2.8),
(4.7), and (4.9)–(4.11)]:

p(y1) = (2P/(πh))
√

1− y2
1/h

2, h2 = (2R1R2/(R1 +R2))(n1 + n2)P ; (5.1)

P
2∑
r=1

nr

(
ln

2Rr
h

+
1
2
−Ar2

)
= α sin γ. (5.2)
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Fig. 2

TABLE 1

β c

0.1 0.0926
0.2 0.4042
0.3 1.0638
0.4 2.4052
0.5 5.3122
0.6 12.4833
0.7 34.4229

Equation (5.2) contains the dimensionless constants A1
2 and A2

2 [coefficients in the asymptotic formulas (2.2)
and (2.5)]. The quantity A1

2 depends on the position of the point C and the shape and fixing conditions of the
body Ω1. The quantity A2

2 depends on the distribution of the load acting on the body Ω2. In particular cases, some
of which are discussed below, these quantities can be expressed explicitly.

5.1. Compression of an Elastic Ring by Curvilinear Punches. We consider an elastic ring Ω with external
radius R and internal radius βR (0 6 β < 1) compressed by rigid punches (Fig. 2). For simplicity, the internal
boundary of the ring Ω is assumed to be stress-free. We denote the mutual displacement of the punches by 2δ0
and set δ0 = εδ∗0 , where ε is a small parameter. In this case, the condition of nonpenetration of the body Ω
into the punch, for example, on the boundary Γ2

c [defined by the equation y2 = f2(y1)] has the form u2(y1, f2) >
εδ∗0 − [(2R1)−1 + (2R2)−1]y2

1 for |y1| < l2.
We write the external asymptotic representation for the displacement field of the body Ω in the form

v(x) = v0(x) +αe2, where v0(x) is a solution of the problem of compression of the elastic ring by forces P applied
at the points C1 and C2. Using the explicit solution (see [14, Chapter 7, § 7.6]), we obtain expansion (2.5) for the
components of the vector v0(x) as x→ C2. In this case, we have A1 = 0 and A2 = 1− ln 2− c, where

c = c0 +
∑

k=2,4,...

k

k2 − 1
ck, c0 =

β2

1− β2
, ck = 2β2k−2 k

2(1− β2)2 + k(1− β4) + 2β2(1− β2k)
(1− β2k)2 − k2β2k−2(1− β2)2

.

Table 1 lists results obtained by these formulas.
As the internal asymptotic representation in the neighborhood of the point C2, we use the sum (4.2) with

γ = π/2. Simple calculations give

h2
i = 2RRi(R+Ri)−1nP (i = 1, 2), n = (æ + 1)/(4πµ); (5.3)

α =
1
4
nP ln

R2(R+R1)
R1(R+R2)

; (5.4)

nP
(

ln (4R/h1) + ln (4R/h2)− 1 + 2c
)

= 2δ0. (5.5)

Schwartz and Harper [8] considered the case of a circular disk (β = 0). Equations (5.3) and (5.5) (for c = 0)
agree with results of [8]. The relative displacement of the center of the elastic disk (5.4) was not determined in
[8]. For a circular disk, relation (5.5) was derived in [15] by another method [see § 5.6, formula (5.57)]. Mention
should also be made of a paper [16], in which a two-term asymptotic representation was obtained for an elastic
disk compressed by rectilinear punches. Relations (5.3) and (5.5) coincide with the leading terms of the asymptotic
formulas (4.24) and (4.23), respectively, given in [16].

5.2. Compression of Two Elastic Disks. The contact pressure between the disks (Fig. 3) and the half-width
of the contact zone h are given by formulas (5.1). For the half-width hi of the contact of the disk with the punch,
we have

h2
i = 2RinP (i = 1, 2). (5.6)
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Fig. 3 Fig. 4

The approach of the punches 2δ0 is related to the compressing force P by the equation

P
2∑
i=1

ni

(
ln

4Ri
h

+ ln
4Ri
hi
− 1
)

= 2δ0. (5.7)

The decrease in the distance between the centers of the disks is given by

α1 − α2 = P
2∑
i=1

ni

(
ln

4Ri
h
− 1

2

)
, (5.8)

where αi is the displacement of the point Oi along the Oix2 axis.
To a first approximation, formulas (5.1) and (5.6)–(5.8) define the solution of the problem. An approximate

relation between the mutual displacement of disks and the compressing force was first proposed in [17, Chapter 8].
Other solutions can be found in [18, § 54; 19]. The problem of two disks compressed by point forces was studied
in [8, 20]. The solution of this problem is given by relations (5.1) and (5.8), which, in essence, coincide with the
results of [8, 20]. It should be noted that formula (5.8) is exact in the asymptotic sense.

5.3. An Elastic Disk Compressed Between Elastic Strips. Let an elastic disk of radius R be compressed
by elastic strips of widths H1 and H2 which are rigidly connected to punches (Fig. 4). As above, we denote the
approach of the punches by 2δ0. In this case, the external asymptotic representation for the displacement field of
the first strip has the form v1(x) = PG1(x) + δ0e2. Here G1(x) is a solution of the problem of the elastic body Ω1

loaded at the point C1 by a unit force in opposition to the Ox2 axis and G1(x) = 0 for x2 = −(R+H1).
In the asymptotic formula G1

j (y1, y2 −R) = S1
j (y/H1) + n1A

1
j +O(|y|), |y| → 0 (j = 1, 2), we have A1

1 = 0
and A1

2 = d1
0, where the constant d i0 is determined with the use of the results of [21, § 22] and has the form

d i0 =

∞∫
0

1
u

(
1− e−u − Li(u)

)
du, Li(u) =

2æi sinh (2u)− 4u
2æi cosh (2u) + 1 + æ2

i + 4u2
.

In particular, d i0 ≈ 0.527 for Poisson’s ratio νi = 0.3 (see [21, Table 3]).
The half-width of the contact zone is calculated from the formula

h2
i = 2R(ni + n)P (i = 1, 2). (5.9)

The contact force P is related to the approach of the punches by the formula

nP
(

ln
4R
h1

+ ln
4R
h2
− 1
)

+
2∑
i=1

niP
(

ln
2Hi

hi
+

1
2
− d i0

)
= 2δ0. (5.10)
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The displacement of the disk center due to deformation is given by

α =
1
4
nP ln

n1 + n

n2 + n
+

2∑
i=1

(−1)i

2
niP

(
ln

2Hi

hi
+

1
2
− d i0

)
. (5.11)

Formulas (5.9)–(5.11) can be used to calculate elastic strains of rolling bearings.
6. Asymptotic Model of Quasistatic Collision of Plane Elastic Bodies. The quasistatic problem of

collision of circular cylinders along their generatrix was solved in [22] (see also [23]). We construct an asymptotic
model for the quasistatic collision of two cylinders along the common generatrix. Following [22, 23], we use the
solution of the problem of the circular disks Ω1 and Ω2 (see Fig. 4) compressed by distributed loads with density
(−1)r+1S−1

r Pe2 (r = 1, 2), where P is the contact-pressure resultant and Sr = πR2
r is the area of the disk Ωr.

We write the external asymptotic representation in the form vr(y) = PGr(y) + αre2. Here Gr(y) is a
solution of the problem of deformation of the disk Ωr under the distributed load (−1)r+1S−1

r e2 balanced by the
unit force (−1)re2 applied at the point C. This solution satisfies the condition Gr(Or) = 0 at the point Or (disk
center). Using the explicit formulas given in [22], we obtain

Gr(y) = (−1)r+1
[
Sr(y/Rr) + nrA

r
2e2

]
+O(|y|), |y| → 0; (6.1)

Ar2 =
[
2(ær + 1)

]−1

(ær + 2) (r = 1, 2). (6.2)

Considering the boundary layer in a first approximation, we ignore the distributed loads. Then, the solution
constructed in Sec. 4 yields the equation

α = P
2∑
r=1

nr

(
ln

2Rr
h

+
1
2
−Ar2

)
, (6.3)

which relates the approach of the disks α = α1−α2 to the contact force P . The half-width of the contact section h
is calculated from formula (5.1).

Equation (6.3) [with allowance for (6.2)] coincides with a similar equation obtained by a different method
in [22; 23, Chapter 3, Eq. (4.6)].

According to the second Newton law, the motion of the center of inertia of the disk Ωr is governed by the
equation Srρrα̈r = (−1)rP , where ρr is the density of the material and the dot denotes differentiation with respect
to time. A consequence of last two equations (r = 1, 2) is the equation

M0α̈ = −P [0= S1S2ρ1ρ2/(S1ρ1 + S2ρ2)]. (6.4)

Equation (6.4) is supplemented by the initial conditions α = 0 and α̇ = v1 − v2, where vr is the velocity of the
body Ωr at t = 0.

In [22, 23], Eqs. (5.1), (6.3), and (6.4) are used to construct quasistatic theory of colliding circular cylinders.
To use the results of [22, 23] in the general case of central collision of plane bounded bodies which are in contact
at a point at the initial moment, one need to calculate the coefficients in (6.2). In the case of an elastic ring, the
quantity Ar2 can be determined from formulas of [24].

Conclusions. The coefficient A2
2 in the initial problem can be expressed explicitly in the particular case of

a circular disk by using the formulas of [12, § 80a].
The solutions constructed in Sec. 5 for circular disks are generalized to the case of elastic rings.
To refine the asymptotic solution obtained, it is necessary to construct an asymptotic representation for the

boundary layer in the regions η2 6
√
εϕ1(η1) and η2 >

√
εϕ2(η1) for the problem of one-sided contact [see (4.3)].

Corrections to the vector W r(η) should be determined with allowance for corrections to the contact segment
(−h∗, h∗). Generally, the variations of the contact zone are different in this case (as in the case of taking into
account shear stresses in [25, 26]). It should be noted that formal asymptotic representations for one-sided contact
zones was constructed in [27, 28].

The main result of this work is the following. The elastic strain of plane bodies Ω1 and Ω2 in contact,
which cannot be expressed in terms of contact stresses in the Hertz theory (see [15, § 5.6]), is determined as a first
approximation by calculating the dimensionless integral characteristics A1

2 and A2
2, which can be referred to as the

local compliances of the elastic bodies Ω1 and Ω2, respectively.
This work was supported by the Administration of St. Petersburg (Grant No. M2000-2.2.P-16).
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